American researchers conducted a series of genomic and behavioral observations and discovered a neuroimmune signaling network responsible for fear in the mouse brain, demonstrating that psychedelics modulate its activity, reducing fear. The presence of a similar signaling system was confirmed in human cells. A report on the study was published in the journal Nature, along with a paper by invited experts.
The exchange of information between immune and neural cells (neuroimmune interactions) facilitates adaptation to environmental conditions and is activated in response to psychological stress. Furthermore, signals from immune cells may predispose to the development of neuropsychiatric disorders, such as major depressive disorder, and are of interest as potential therapeutic targets. Identifying these targets requires a detailed understanding of the interactions between complex behavioral changes and immunoregulatory mechanisms, but these remain poorly understood.
Michael Wheeler of Harvard Medical School and colleagues studied gene expression profiles and conducted behavioral tests in mice that were either physically restrained or not. They found that the animals had elevated levels of inflammatory markers and heightened fear responses after stress. Their amygdala (a structure that plays a key role in stress and fear) contained distinct populations of astrocyte glial cells in which epidermal growth factor receptors (EGFR) expression decreased in response to stress. Artificially suppressing EGFR expression in astrocytes led to increased inflammatory responses to stress in the brain and associated behavioral changes. Among all the proteins in astrocytes, expression of the receptor tyrosine phosphatase PTPRS increased most significantly.
Эксперименты на культурах клеток показали, что при нокдауне EGFR и стимуляции провоспалительным цитокином интерлейкином-1β в астроцитах повышается синтез PTPRS, а в нейронах вследствие этого усиливается экспрессия связывающегося с ним мембранного белка SLITRK2. Это свидетельствует, что астроциты из обедненной EGFR при хроническом стрессе популяции могут модулировать связь астроцитов с нейронами посредством сигнального пути PTPRS-SLITRK2. Дальнейшие опыты in vitro продемонстрировали, что при снижении активности этого сигнального пути в нейронах уменьшается синтез фактора транскрипции NR2F2. Чтобы понять его роль, исследователи подавили его экспрессию в нейронах миндалевидного тела мышей и пронаблюдали ослабление вызванного стрессом страха. Это сопровождалось уменьшением синаптических связей между нейронами и количества возбуждающих нейронов в миндалевидном теле.
Пространственное транскриптомное исследование миндалевидных тел мышей выявило кластер возбуждающих нейронов, связанных со стрессом и страхом. Они были расположены вблизи астроцитов с пониженной экспрессией EGFR и отличались высоким уровнем NR2F2. Также их транскриптомный профиль соответствовал активации цитокинами интерлейкином-1β и интерлейкином-12, хотя признаков инфильтрации иммунными клетками и наличия цитокинов в миндалевидных телах не наблюдалось. В силу этого авторы работы предположили, что при стрессе небольшое количество иммунных клеток, не определяемое пространственной транскриптомикой, может присутствовать вблизи мозговых структур и модулировать обнаруженные нейронально-глиальные взаимодействия.
Чтобы проверить эту гипотезу, они исследовали популяции иммунных клеток в мозговых оболочках, глубоких шейных лимфоузлах и селезенке животных. Оказалось, что во время стресса из селезенки в мозговые оболочки мигрируют моноциты, а после окончания стрессорного воздействия их количество снижается. Кроме того, в условиях хронического стресса в крови мышей повышался уровень интерлейкина-1β, который проникал через гематоэнцефалический барьер и повышал экспрессию рецепторов к себе в астроцитах с низким уровнем EGFR.
Поскольку серотониновые сигнальные пути регулируют и нейрональную реакцию на стресс, и функции иммунной системы, исследователи проанализировали реакцию иммунных клеток на серотонинергические психоделики. Введение мышам после стресса псилоцибина или метилендиоксиметамфетамина (МДМА) в дозах, примерно соответствующих человеческим, выраженно снижало количество моноцитов в мозговых оболочках, синтез ими цитокинов и проявления страха. При этом в селезенке и лимфоузлах состав иммунных клеток значимо не менялся, то есть препараты действовали на их миграцию в мозговые оболочки не непосредственно. Дальнейшие опыты показали, что регуляция этого процесса психоделиками может происходить за счет сужения сосудов. Эксперименты с клеточными культурами также продемонстрировали непосредственные эффекты этих препаратов: в CD11b-положительных клетках селезенки уменьшались вызванная кортикостероном экспрессия хемокиновых рецепторов и вызванная липополисахаридами экспрессия интерлейкина-1β, а в астроцитах — экспрессия NR2F2. Наличие схожих нейроиммунных механизмов регуляции посредством пути EGFR-PTPRS-SLITRK2 у человека подтвердили с использованием культур клеток миндалевидных тел шести пациентов с большим депрессивным расстройством и шести человек без него.
Таким образом, существует нейроиммунная сигнальная ось, регулируемая моноцитами в мозговых оболочках, которая влияет на нейронально-глиальные ответы на стресс в миндалевидных телах и чувство страха, причем эта ось чувствительна к действию психоделиков. Дальнейшее изучение нейроиммунных взаимодействий, таким образом, может привести к идентификации новых терапевтических мишеней как для нейропсихиатрических, так и для воспалительных заболеваний.
Ранее швейцарские исследователи проводили функциональную МРТ здоровым добровольцам и обнаружили, что прием ЛСД существенно уменьшает реакцию миндалевидного тела, а также веретеновидной и медиальной лобной извилин на пугающие стимулы, то есть подавляет нейрофизиологические механизмы страха.